

Why do we need a new way to compute?

Disruptive computing

Global optimization

Quantum Chemistry
of many atoms

Breaking of encryption

Really costly on a classical computer

Commodity computing

Cheap on a quantum computer

Cheap on a classical computer

The building blocks: dits vs. qubits

craft industrial realization scale

The idea of classical bits

AN ARROW
WHICH IS EITHER
UP (1) OR DOWN (0):

ALGORITHMS BUILT IN THE LANGUAGE OF BOOLEAN LOGIC

BITS REPRESENTED BY CURRENTS (ON/OFF) - OPERATIONS (GATES) BY ELECTRONIC CIRCUITS

Replica: UKAEA Harwell, Oxfordshire, England, Science Museum Group Collection

The first transistor made at Bell Labs (1947)

€M1 Ultra

Modern laptop processor with 114 BILLION transistors (2021)

The idea of quantum bits

AN ARROW FIXED
AT THE CENTER OF
A SPHERE

ALGORITHMS BUILT
IN LANGUAGE
OF ROTATIONS

Y. Nakamura, Yu. A. Pashkin and J.- S. Tsai, Nature 398, 786-788 (1999)

The first qubit made of silicon NEC/JST (1999)

A. M. J. Zwerver et.al. Nature Electronics volume 5, pages 184-190 (2022)

The first industrially manufactured silicon qubit by INTEL (2022)

STATE OF QBITS CHANGES (ROTATIONS) BY USING MICROWAVE SIGNALS

To learn more about semiconductor based qubits: https://bit.ly/3MS9xVy

A quantum birthday

100 year anniversary of the Stern-Gerlach experiment

1st Revolutionary insight:

All elementary matter particles are qubits they carry a little arrow called SPIN

2nd Revolutionary insight:

Nature Physics volume 4. page S6 (2008)

Qubits are DISCRETE & flip RANDOMLY into up/down when asked

3rd Revolutionary insight: Quantum Holistics 1+1>2

Two classical bits are unaware of each other

Quantum bits can be made aware of each other due to ENTANGLEMENT

If you want to learn more about entanglemennt check out: https://bit.ly/3wan0q6

Three tenets of Quantum Machanics

discreteness randomness entanglement

Where is the quantum advantage hiding?

Optimization: find the deepest valley

Classical computer: follow steepest slope locally

Quantum computer:
due to ENTANGLEMENT
probes many valleys
simultaneously

What prevents quantum advantage?

LOSS OF entang ement among qubits!

Quantum Computing

Potential for disruptive computing

Based on three Quantum Tenets

Challenge: protecting entanglement

